Qualitative Localization using Vision and Odometry for Path Following in Topo-metric Maps
نویسندگان
چکیده
We address the problem of navigation in topometric maps created by using odometry data and visual loopclosure detection. Based on our previous work [6], we present an optimized version of our loop-closure detection algorithm that makes it possible to create consistent topo-metric maps in real-time while the robot is teleoperated. Using such a map, the proposed navigation algorithm performs qualitative localization using the same loop-closure detection framework and the odometry data. This qualitative position is used to support robot guidance to follow a predicted path in the topo-metric map compensating the odometry drift. Compared to purely visual servoing approaches for similar tasks, our path-following algorithm is real-time, light (not more than two images per seconds are processed), and robust as odometry is still available to navigate even if vision information is absent for a short time. The approach has been validated experimentally with a Pioneer P3DX robot in indoor environments with embedded and remote computations.
منابع مشابه
Combining Odometry and Visual Loop-Closure Detection for Consistent Topo-Metrical Mapping
We address the problem of simultaneous localization and mapping (SLAM) by combining visual loop-closure detection with metrical information given by a robot odometry. The proposed algorithm extends a purely appearance-based loopclosure detection method based on bags of visual words [1] which is able to detect when the robot has returned back to a previously visited place. An efficient optimizat...
متن کاملAppearance-based mapping using minimalistic sensor models
This paper addresses the problem of localization and map construction by a mobile robot in an indoor environment. Instead of trying to build high-fidelity geometric maps, we focus on constructing topological maps as they are less sensitive to poor odometry estimates and position errors. We propose a modification to the standard SLAM algorithm in which the assumption that the robots can obtain m...
متن کاملVision-based SLAM using the Rao-Blackwellised Particle Filter
We consider the problem of Simultaneous Localization and Mapping (SLAM) from a Bayesian point of view using the Rao-Blackwellised Particle Filter (RBPF). We focus on the class of indoor mobile robots equipped with only a stereo vision sensor. Our goal is to construct dense metric maps of natural 3D point landmarks for large cyclic environments in the absence of accurate landmark position measur...
متن کاملReduction of Odometry Error in a two Wheeled Differential Drive Robot (TECHNICAL NOTE)
Pose estimation is one of the vital issues in mobile robot navigation. Odometry data can be fused with absolute position measurements to provide better and more reliable pose estimation. This paper deals with the determination of better relative localization of a two wheeled differential drive robot by means of odometry by considering the influence of parameters namely weight, velocity, wheel p...
متن کاملStereo vision SLAM: Near real-time learning of 3D point-landmark and 2D occupancy-grid maps using particle filters
This paper summarizes our past work on solving the visual Simultaneous Localization and Mapping Problem (SLAM). We focus on robots equipped with stereo vision and develop a SLAM solution based on the theory of the Rao-Blackwellised particle filter (RBPF). We refer to our method as σSLAM. We construct maps of 3D point-landmarks identified by their visual appearance. Specifically, we use the Scal...
متن کامل